80 research outputs found

    Exact calculation of network robustness

    Get PDF
    Finding the most critical nodes regarding network connectivity has attracted the attention of many researchers in infrastructure networks, power grids, transportation networks and physics in complex networks. Static robustness of networks under intentional attacks analyses the ability of a system to maintain its connectivity after the disconnection or deletion of a series of targeted nodes. In this context, connectivity is typically measured by the size of the remaining largest connected component. When targeting these nodes, previous literature has mostly used adaptive strategies that sequentially remove central nodes, or created heuristics in order to improve the results of the adaptive strategies. The proposed methodology based on mathematical programming allows to identify, for every fraction of disconnected or removed nodes, the set that minimizes the size of the largest connected component of a network, i.e. it allows to calculate the exact (most critical) robustness of a network.Peer ReviewedPostprint (author's final draft

    Exact solutions to a class of stochastic generalized assignment problems

    Get PDF
    This paper deals with a stochastic Generalized Assignment Problem with recourse. Only a random subset of the given set of jobs will require to be actually processed. An assignment of each job to an agent is decided a priori, and once the demands are known, reassignments can be performed if there are overloaded agents. We construct a convex approximation of the objective function that is sharp at all feasible solutions. We then present three versions of an exact algorithm to solve this problem, based on branch and bound techniques, optimality cuts, and a special purpose lower bound. numerical results are reported.

    The stratified p-center problem

    Full text link
    This work presents an extension of the p-center problem. In this new model, called Stratified p-Center Problem (SpCP), the demand is concentrated in a set of sites and the population of these sites is divided into different strata depending on the kind of service that they require. The aim is to locate p centers to cover the different types of services demanded minimizing the weighted average of the largest distances associated with each of the different strata. In addition, it is considered that more than one stratum can be present at each site. Different formulations, valid inequalities and preprocessings are developed and compared for this problem. An application of this model is presented in order to implement a heuristic approach based on the Sample Average Approximation method (SAA) for solving the probabilistic p-center problem in an efficient way.Comment: 32 pages, 1 pictur

    Outsourcing policies for the Facility Location Problem with Bernoulli Demand

    Full text link
    This paper focuses on the Facility Location Problem with Bernoulli Demand, a discrete facility location problem with uncertainty where the joint distribution of the customers' demands is expressed by means of a set of possible scenarios. A two-stage stochastic program with recourse is used to select the facility locations and the a priori assignments of customers to open plants, together with the a posteriori strategy to apply in those realizations where the a priori solution is not feasible. Four alternative outsourcing policies are studied for the recourse action, and a mathematical programming formulation is presented for each of them. Extensive computational experiments have been carried-out to analyze the performance of each of the formulations and to compare the quality of the solutions produced by each of them relative to the other outsourcing policies

    Lagrangean Duals and Exact Solution to the Capacitated p-Center Problem

    Get PDF
    In this work we study the Capacitated p-Center Problem (CpCP) and we propose an exact algorithm to solve it. We study two auxiliary problems and their relation to CpCP, and we propose two different Lagrangean duals based on each of the auxiliary problems. The lower and upper bounds provided by each of the Lagrangean duals reduce notably the set of candidate radii and allow to solve the problem with an exact algorithm based on binary search. The results obtained with experimental testing on various data sets from literature show the efficiency of the proposal that outperforms previous proposals

    When centers can fail: a close second opportunity

    Get PDF
    This paper presents the p-next center problem, which aims to locate p out of n centers so as to minimize the maximum cost of allocating customers to backup centers. In this problem it is assumed that centers can fail and customers only realize that their closest (reference) center has failed upon arrival. When this happens, they move to their backup center, i.e., to the center that is closest to the reference center. Hence, minimizing the maximum travel distance from a customer to its backup center can be seen as an alternative approach to handle humanitarian logistics, that hedges customers against severe scenario deteriorations when a center fails. For this extension of the p-center problem we have developed several different integer programming formulations with their corresponding strengthenings based on valid inequalities and variable fixing. The suitability of these formulations for solving the p-next center problem using standard software is analyzed in a series of computational experiments. These experiments were carried out using instances taken from the previous discrete location literature.Peer ReviewedPostprint (author’s final draft

    Reformulated acyclic partitioning for rail-rail containers transshipment

    Get PDF
    Many rail terminals have loading areas that are properly equipped to move containers between trains. With the growing throughput of these terminals all the trains involved in a sequence of such movements may not ¿t in the loading area simultaneously, and storage areas are needed to place containers waiting for their destination train, although this storage increases the cost of the transshipment. This increases the complexity of the planning decisions concerning these activities, since now trains need to be packed in groups that ¿t in the loading area, in such a way that the number of containers moved to the storage area is minimized. Additionally, each train is only allowed to enter the loading area once. Similarly to previous authors, we model this situation as an acyclic graph partitioning problem for which we present a new formulation, and several valid inequalities based on its theoretical properties. Our computational experiments show that the new formulation outperforms the previously existing ones, providing results that improve even on the best exact algorithm designed so far for this problem.Peer ReviewedPostprint (author's final draft

    Heuristic solucions to the facility location problem with general Bernoulli demands

    Get PDF
    In this paper, a heuristic procedure is proposed for the facility location problem with general Bernoulli demands. This is a discrete facility location problem with stochastic demands that can be formulated as a two-stage stochastic program with recourse. In particular, facility locations and customer assignments must be decided here and now, i.e., before knowing the customers who will actually require to be served. In a second stage, service decisions are made according to the actual requests. The heuristic proposed consists of a greedy randomized adaptive search procedure followed by a path relinking. The heterogeneous Bernoulli demands make prohibitive the computational effort for evaluating feasible solutions. Thus the expected cost of a feasible solution is simulated when necessary. The results of extensive computational tests performed for evaluating the quality of the heuristic are reported, showing that high-quality feasible solutions can be obtained for the problem in fairly small computational times.Peer ReviewedPostprint (author's final draft

    The probabilistic p-center problem: Planning service for potential customers

    Get PDF
    This work deals with the probabilistic p-center problem, which aims at minimizing the expected maximum distance between any site with demand and its center, considering that each site has demand with a specific probability. The problem is of interest when emergencies may occur at predefined sites with known probabilities. For this problem we propose and analyze different formulations as well as a Variable Neighborhood Search heuristic. Computational tests are reported, showing the potentials and limits of each formulation, the impact of their enhancements, and the effectiveness of the heuristic.Peer ReviewedPostprint (author's final draft

    An exact approach for the reliable fixed-charge location problem with capacity constraints

    Get PDF
    Introducing capacities in the reliable fixed charge location problem is a complex task since successive failures might yield in high facility overloads. Ideally, the goal consists in minimizing the total cost while keeping the expected facility overloads under a given threshold. Several heuristic approaches have been proposed in the literature for dealing with this goal. In this paper, we present the first exact approach for this problem, which is based on a cutting planes algorithm. Computational results illustrate its good performancePostprint (published version
    corecore